IEEE VIS 2025 Content: Automatic Semantic Alignment of Flow Pattern Representations for Exploration with Large Language Models

Automatic Semantic Alignment of Flow Pattern Representations for Exploration with Large Language Models

Weihan Zhang -

Jun Tao -

Image not found

Room: Hall M2

Keywords

Flow visualization, natural language, streamlines

Abstract

Explorative flow visualization allows domain experts to analyze complex flow structures by interactively investigating flow patterns. However, traditional visual interfaces often rely on specialized graphical representations and interactions, which require additional effort to learn and use. Natural language interaction offers a more intuitive alternative, but teaching machines to recognize diverse scientific concepts and extract corresponding structures from flow data poses a significant challenge. In this paper, we introduce an automated framework that aligns flow pattern representations with the semantic space of large language models (LLMs), eliminating the need for manual labeling. Our approach encodes streamline segments using a denoising autoencoder and maps the generated flow pattern representations to LLM embeddings via a projector layer. This alignment empowers semantic matching between textual embeddings and flow representations through an attention mechanism, enabling the extraction of corresponding flow patterns based on textual descriptions. To enhance accessibility, we develop an interactive interface that allows users to query and visualize flow structures using natural language. Through case studies, we demonstrate the effectiveness of our framework in enabling intuitive and intelligent flow exploration.